[image: image11.jpg]@ o T wnaeny

Technical Architecture Guide

Sponsor Award # caBIG-CTMS-21-01-04012007
<<Study Calendar Technical Architecture Guide>>
[image: image10.jpg]@ o T wnaeny

Technical Architecture Guide

Sponsor Award # caBIG-CTMS-21-01-04012007

Technical Architecture Guide

V 1.2

CTMS Patient Study Calendar Phase II

Robert H. Lurie Comprehensive Cancer Center of Northwestern University
Document Change History

	Version Number
	Date
	Contributor
	Description

	V 1.0
	2007-07-1
	John Dzak
	Added New Functionality

	V 1.1
	2007-8-16
	John Dzak
	Updated Diagrams with new UML Diagrams

	V 1.1.1
	2007-9-13
	Sean Whitaker
	Minor updates for Construction Release 1

	V 1.1.2
	2007-10-23
	Sean Whitaker
	Address BAH feedback

	V 1.1.3
	2007-10-29
	Sean Whitaker, Saurabh Agrawal
	Add API stubs and section on Grid services

	V 1.1.4
	2007-12-11
	Sean Whitaker, Saurabh Agrawal
	Add grid service, address feedback

	V 1.2
	2008-2-7
	Sean Whitaker
	Add RESTful API, update diagrams, address D&T comments

Audience
This document is designed to meet the needs of software developers who are interested in learning about or extending PSC. To understand the information outlined in this document, you should be familiar with basic concepts of software design and implementation.

Copyright and License
The caBIG software license may be found here:

https://cabig.nci.nih.gov/working_groups/DSIC_SLWG/FINAL-DSIC-WS-Documents/Model_caBIG_Software_License_Agreement_v1_04.20.06.doc

	Patient Study Calendar Team

	Development
	Project Management

	Rhett Sutphin1 (lead)
	Sean Whitaker1

	Ram Chilukuri2
	Warren Kibbe1 (Principal Investigator)

	Andrew Winter1
	

	Nataliya Shurupova1
	

	Anurag Kondapalli1
	

	John Dzak1
	

	Saurabh Agrawal2
	

	(1) Northwestern University Robert H. Lurie Comprehensive Cancer Center

(2) SemanticBits

[image: image10.jpg]Table of Contents

11.
Introduction to the Technical Architecture Guide

1About Patient Study Calendar

1Overview of the Guide

2Organization of the Guide

2Document Text Conventions

12. Overview of the Software

1Software overview

1System requirements

1Required Software

1Database Requirements

2Design and architecture

33. Patient Study Calendar Requirements (Use Case View)

5Trial Protocols

5Tracking Participants

5Usability

74. Patient Study Calendar Architecture

7Overview

7Architectural Layers (Logical View)

7Domain

9Business Logic

9Data access

11Presentation

11Control

11View

11Dependency injection (Architectural Pattern)

12Process View

14Component View

14Deployment View

175. Security

17Roles

17Authentication

17Authorization

196. Patient Study Calendar APIs

217. Patient Study Calendar Grid Services

278. Information Models

299. Customized Tools

29Bering – Incremental database development

31Technical Manuals/Articles

1. Introduction to the Technical Architecture Guide

About Patient Study Calendar

The Patient Study Calendar (PSC) is an open source, standards-compliant, web-based application that assists with the management of the activities of subjects on clinical trials. PSC provides the ability to create and edit a standard template to represent the activities defined by a study protocol, use this template to generate and view prospective calendars of subject activities, track the state of activities as a subject progresses through the study, and manage subject calendars as they change during a study. PSC also provides interfaces for managing access to data across a multi-site environment and balancing the workload of Subject Coordinators.
PSC is being developed to interoperate with other tools within the Clinical Trials Management System (CTMS) workspace of the caBIG community. As part of the caBIG Clinical Trials Suite (CCTS), PSC leverages the caGRID infrastructure to receive study creation and patient registration information from C3PR, receives and displays on a subject’s schedule Adverse Event notifications from caAERS, and provides links from a subject’s calendar to caAERS and Lab Viewer so that the coordinator may quickly access additional information about the subject.

For information about CCTS architecture: http://gforge.nci.nih.gov/docman/view.php/368/10498/ccts_architecture.doc
For information about caGRID: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid/
Overview of the Guide

This document covers the technical and design aspects of the implementation of the Patient Study Calendar application with an overview of the requirements for context. Not covered here, but available in other project documents are:

· Detailed requirements
· Use cases
· Domain UML model
· Installation
· Administration
Organization of the Guide
	Chapter
	Contents

	Chapter 1
	Overview of this document

	Chapter 2
	Technical overview of the Patient Study Calendar application

	Chapter 3
	User-visible requirements overview; description of the domain

	Chapter 4
	Technical design and architecture; libraries used and their purpose; code organization

	Chapter 5
	Overview of security architecture

	Chapter 6
	Description of public APIs

	Chapter 7
	Description of Grid services

	Chapter 8
	Overview of PSC’s use of UML

	Chapter 9
	Bering (a custom tool for database-independent schema development)

Table 1. 1 Summary of the sections of this guide

Document Text Conventions

The following table shows various typefaces to differentiate XE "Text conventions, Supplement" between regular text and menu commands, keyboard keys, and text that you type. This illustrates how conventions are represented in this guide. XE "Document conventions, Supplement"
	Convention
	Description
	Example

	Bold & Capitalized Command

Capitalized command > Capitalized command
	Indicates a Menu command

Indicates Sequential Menu commands
	Admin > Refresh

	text in small caps
	Keyboard key that you press
	Press enter

	text in small caps + text in small caps
	Keyboard keys that you press simultaneously
	Press shift + ctrl and then release both.

	Special typestyle

	Used for filenames, directory names, commands, file listings, source code examples and anything that would appear in a Java program, such as methods, variables, and classes.
	URL_definition ::= url_string

	Boldface type
	Options that you select in dialog boxes or drop-down menus. Buttons or icons that you click.
	In the Open dialog box, select the file and click the Open button.

	Italics
	Used to reference other documents, sections, figures, and tables.
	caCORE Software Development Kit 1.0 Programmer’s Guide

	Italic boldface type
	Text that you type
	In the New Subset text box, enter Proprietary Proteins.

	Note:
	Highlights a concept of particular interest
	Note: This concept is used throughout the installation manual.

	Warning!
	Highlights information of which you should be particularly aware.
	Warning! Deleting an object will permanently delete it from the database.

	{}
	Curly brackets are used for replaceable items.
	Replace {root directory} with its proper value such as c:\cabio

Table 1. 2 Document Conventions

2. Overview of the Software

Software overview

Patient Study Calendar is a Java web application based on the J2EE Servlets infrastructure. For details on the implementing libraries, see Chapter 4.

System requirements

Required Software

	Software Name
	Version
	Description
	URL

	Java SE Development Kit
	JDK 5.0
	The Java SE development kit with JRE, compilers and debuggers
	http://java.sun.com/javase/downloads/index.jsp

	Apache Tomcat

	5.5.17 or higher
	Servlet container for JSP
	http://tomcat.apache.org/download-55.cgi

	Apache Ant
	1.6 or higher
	Java-based build tool
	http://ant.apache.org/bindownload.cgi

Table 1 Required software and technology

Database Requirements

The Patient Study Calendar requires access to a properly-configured database. The application is built with database-independence in mind and has been tested on the following:

	Database Name
	Version
	Description
	URL

	PostgreSQL
	8
	PostgreSQL is a powerful, open source relational database system.
	http://www.postgresql.org/download/

	Oracle

	9i

	Industry-leading, commercial database product.
	http://www.oracle.com/technology/software/products/oracle9i/index.html

For more details, please see the Installation Guide.

Design and architecture

Patient Study Calendar follows the widely-accepted Model-View-Controller (MVC) structure for object-oriented software. It is built in layers, with most communication occurring between adjacent layers only, and communication consisting of passed domain instances or other model objects. For more detail, see Chapter 4.

[image: image1.jpg]Study Calendar Web Application Architecture
Tomcat 5.5.x

Presentation
Spring MVC

« Controllers

« Commands

« Dispatcher Servlet
«JSP

* spring-config.xml
= webxml

B — S

3. Patient Study Calendar Requirements (Use Case View)

This is a brief overview. For more information, please see the Use Case Document: http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC_Use_Case.doc?cvsroot=studycalendar
The full Software Requirements and Specifications document can be found here:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC_SRS.doc?cvsroot=studycalendar
The diagram below illustrates the high-level use case model for the Patient Study Calendar:

[image: image2.png]

Trial Protocols

As modeled in the Patient Study Calendar, a clinical trial protocol is a schedule of procedures, treatments, and examinations (collectively called activities) that a participant is expected to undergo over the course of the trial. The schedule is broken down into large-scale segments (epochs).

An epoch may have more than one possible course of activities – these courses are called arms – of which a participant will usually only follow one.

Each arm contains one or more periods.

A period is a set of consecutive days, beginning at a certain day in the arm and possibly repeating.

Activities are assigned to days within the period, creating planned events. An activity may be scheduled to happen more than once on a given day in a period, but there is no requirement to schedule at a finer time scale than one day.

Tracking Participants

Once the full protocol is modeled in the application and finalized, participants may be assigned to it. Assigning a participant involves giving him a start date and selecting which arm he’ll be on for the first epoch. This allows the system to create the first set of scheduled events, which are planned events with a date and participant attached.

As the participant proceeds through the protocol, a participant coordinator or research associate will mark the scheduled events he’s completed and/or canceled. At the end of each epoch, the user will be prompted to select the arm for the participant for the next epoch. At any time, the user may manually shift the participant to a different epoch or a different arm within the same epoch.

Usability

The model for a schedule is very complex, with four levels of nested objects and the possibility of repeats and parallel paths. For this reason, it is important to display the protocol in a clear, comprehensible, and familiar manner, and to allow it to be edited simply and directly.

4. Patient Study Calendar Architecture

Overview

Patient Study Calendar is a standard, modern, non-EJB java web application with a well defined set of public API’s. The architecture of the Patient Study Calendar is described below using the 4 +1 view paradigm.

Architectural Layers (Logical View)

It has 4 fundamental layers – domain, data access, business logic, and presentation – and several ancillary packages, all glued together using dependency injection.

Domain

Patient Study Calendar’s domain objects are implemented as plain java beans. They are contained in the “edu.northwestern.bioinformatics.studycalendar.domain” java package. The domain model is documented in a UML class diagram, which can be accessed at:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC_UML-P2-R3.EAP?cvsroot=studycalendar
The implementation model is based on a domain analysis model which has been harmonized with the BRIDG model.

They domain objects in the implementation model are mapped to tables in the database (commonly referred to as Object Relational Mapping) using Hibernate Annotations. For more information on Hibernate, please see: http://hibernate.org/5.html
The following graphic enumerates the domain objects of the Patient Study Calendar:

[image: image3.png]olass Logical Mode!

RelativeRecurringBlaskout

site
Amendmentapproval n
= T Subject
o o
Popuistion
" Biackoutdste
<
1
o
1 o 1
. 1 o 2 =
Revision - StudySubjectassionment
Studyeite WeskDayBiacout [Specitcatesizckout|
Amendmert y
o 1 "]
4
3 "
1 1
1
o
i ! :
|adverseevertisticstion|
PlannedCalendarDsita PlannedCalendar Scheduiedcaiendar
o
'l
o | A
1 1 !
\ 1
‘ EpochDsita Epoch !
dverseEvent
'
1
1
' 1
StudySegmentosita St Sehedisdstudysegment
I T 1
1 1
1
Periodnetts Period r—
" " 7
SeheduteahciivityState
1 1
- .
i o Schecuiedictivity o
annedactivitybet Plannedictivity
T
'K
0 /
1 " a1 adiviy 1
st
change setivity
= Sche Occurred Canoeled
fx [
Reorder Remove ; :
i .
setivityType Saurce

PropertyChangs

Business Logic

Business logic based on a single domain object (commonly referred to as domain logic) and its attributes is implemented within the domain object itself, following good object-oriented design principles. For example, an Epoch has no intrinsic length attribute, but it can calculate its own maximum length by examining its Arms.

Business logic involving multiple domain objects is implemented externally, generally in the business service tier. For example, adding a participant to a study involves reads, updates, and inserts spanning more than 10 different domain objects. It is therefore implemented in a service class (ParticipantService).

Following graphic enumerates all the classes in the business logic layer:

[image: image4.png]od service

Basic

etatien
Tempiateskeletoncreatormp:

etatien

Brank

Tempiateskeletoncreatormp:

Sitaservice

Studysarvios

Tempiateskelatoncreatormpl

Usersarvios

winteraven
rempiziesheteioncresior|

7

Participantsarvios

[rempiateservioe

Data access

The data access layer in the Patient Study Calendar is implemented using the Data Access Object (DAO) J2EE design pattern. The domain objects are created, updated and queried exclusively via DAOs. A DAO essentially encapsulates the logic necessary to create, retrieve update, and delete a domain object from the database. Implementation of DAO pattern promotes database portability. The DAOs in the Patient Study Calendar are based on the Spring Framework’s Hibernate abstraction layer. Use of this abstraction layer greatly simplifies the data access by eliminating the need to write low level and repetitive plumbing code using the API provided by Hibernate framework.

The DAOs in the Patient Study Calendar are contained in the “edu.northwestern.bioinformatics.studycalendar.dao” java package. The graphic below enumerates all the DAO classes in the Patient Study Calendar.

[image: image5.png]od dao.

[Suaycatendamen<ier| [SudyCatendadaoStudySies | [SudyCalenaarGranentinabieDan<StudyPaticipantAssgnnents| [tudyCatendarnasiantianis Do <Study| i I

UserDzo Stugysitenso StudyPartcipartssignmertDao sty StuayCalerniarDao<r>]
GrdientiatieDan<T>|

oy CatendarsrivntentinableDso

E

[Fesierds Gomainonid]

—
R - bentaGidRen e a0 Ste>) [SudyCalendareidRentialeDa<SeheduieaEents| [SuayCalendaran<seheduledcatendars| [SuyCatendaran<sehedutedAm>)
|abstrctOomain isectozo<r>| SitaDao SchedulsdEvertDao SeheduledCalendarlas ScheduledarmDao
StudyCalendardao
[StsyCatendardao<Plamnedtvert| [StudyCotensarbao<ransedCatendars) [StudyCatendardzosranod=] [tudyCatendarcadtantitabieDaoPaticipart=] [StudyGatendarbzosooch>
PrannedEvertnso PrannedCsiendsrDzo Periodbso PartiipantDao Epochba
[StasyCatendararstientnamienao<am>| [StudyGatensarbas<adwereEventiotitoation=| [stdyCatendarbas<acthity=|

srmbzo AdverssEventhctiiostionao sctivityao

Presentation

The presentation layer can further be sub divided into control and view layers, which are described below.

Control

The control layer is made up of two closely-collaborating types of classes: commands and controllers. Commands encapsulate the data and behavior associated with a user operation, generally including one or more domain objects. Controllers handle mapping incoming requests onto command instances and providing the command output back to the view layer.

Patient Study Calendar uses Spring MVC (which is itself based on Servlets) to dispatch web requests to the appropriate controllers.

View

The view layer uses JSP 2.0 and takes full advantage of tag libraries, both provided by Spring and custom developed, to reduce boilerplate code.

Design templating is handled using SiteMesh, which takes the full HTML pages generated from the JSPs and decorates it with the common site elements.

Dependency injection (Architectural Pattern)

The objects in different layers are connected or wired together using an architectural pattern called dependency injection/inversion of control. This means that, instead of a DAO object acquiring a data source from JNDI, or a controller finding a DAO using some sort of service locator, each object declares the objects (commonly referred to as collaborators) it depends on based on its own requirements. All the collaborators are instantiated by an external configuration tool; all their dependencies are satisfied by that tool when they are created.

Inter-layer dependencies are oriented such that higher levels depend on lower levels, but never vice versa. For instance, a service may depend on a DAO, but a DAO will never depend on a service.

Patient Study Calendar uses the Spring Framework (version 2.0), specifically Spring IOC container for dependency injection, with the dependencies declared in a series of XML files included alongside the deployed classes. For more information about the Spring Framework, please see http://www.springframework.org/documentation.

The following diagram illustrates the wiring of various objects that belong to different layers in the Patient Study Calendar:

[image: image6.jpg]Wiring Study Calendar Web Application Objects using
Spring IOC

i

Process View

The figure below is a generic sequence diagram illustrating the interaction between the Patient Study Calendar classes and some of the key classes of the Spring MVC framework during the processing of a user request for a web page.

All HTTP requests in the Spring MVC go thru the DipatcherServlet, which serves as a front controller. It uses a HandlerMapping object to figure out the Controller class that should be used to handle the request. The mapping between the URL and the controller class is configured in the spring-servlet.xml file. The DispatcherServlet also retrieves all the interceptors that are configured for the controller before delegating the request to the controller class. In the case of the Patient Study Calendar, two interceptors are used; LoginCheckInterceptor to check if the user is logged in and has a valid active session and URLAccessCheckInterceptor to verify if the logged in user is authorized to access the page that he/she is requesting. If the login check fails, the user is redirected to the login page and if the user does not have privileges to access a page then the access denied page is displayed. The URLAccessCheckInterceptor uses the CSM API for establishing the access rights of the logged in user.

After the request passes the checks, the DispatcherServlet creates a command object that encapsulates the HTML form elements and delegates the processing of the request to a controller object by passing the command object to it. The controller object uses the command object, appropriate Patient Study Calendar service and DAO objects to process the request and returns a ModelAndView object, which contains the model and the view to be rendered. The Dispatcher uses the model information to render the view.

[image: image7.wmf]

Component View
The following UML diagram illustrates the component view of the Patient Study Calendar system.

[image: image8.jpg]cmp Study Calendar Component Model

]

«drameworks

Scriptaculous

u

]

aframeworks
Spring MVC

AcessControl

ol

Tqmplatesdfice

e}

st ug»xo szmngw
AccessControl ‘ ‘

Seniice Layer

)

ParticipantS&nvice

O
]

Persistence jar

ScheduledCalendaiDAO

«drameworks.
Hibernate

DomainObjects jar

]

PlannedCalendarSenice

ScheduledCalendarSenice

AccessControl

«sub system»
Common Security Module (CSM)

Deployment View

The following UML diagram illustrates the deployment view for the Patient Study Calendar system.

[image: image9.jpg]deployment Study Calendar Deployment Model

Application Server (Tomcat) 8

Web Sener [

TCPIP. i g

1
I Teene
HTTP
1]| A Database (PostGreSQL/Oracle) &

Cient 3] ¢ TcPp

HTTP

5. Security

For more information Security and Roles, please see the Administration Guide:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC_Admin_Guide.doc?cvsroot=studycalendar
Roles

Patient Study Calendar users are assigned one or more roles. These roles are based on the roles described in our Use Case documents.

	System Administrator

(SysAd)
	· Creates user accounts

· Grants users to role(s) and site(s) within the application

· Configures the application

	Study Administrator

(SA)
	· Reviews completed study templates and approves them

· Imports and exports study templates

· Makes studies available to each site

	Study Coordinator

(SC)
	· Creates new study templates

· Marks templates as being ready for review by Study Administrator

	Site Coordinator

(SiC)
	· Determines which study templates are accessible by each Subject Coordinator

· Reassigns subject calendars to appropriate Subject Coordinator

	Subject Coordinator

(SubC)
	· Assigns subjects to studies

· Generates and manages calendars for subjects

Authentication

The username and password are authenticated using CSM from credentials stored in the application database. For more information on CSM, please see: http://ncicb.nci.nih.gov/infrastructure/cacore_overview/csm.
Authorization

Patient Study Calendar uses role-based authorization of two types. First is access to URLs – roles are assigned access permissions to the pages they need to function. Second is attribute-based – some pages mutate based on the roles granted to the logged-in user. Certain links or forms will only appear if a user has a role that grants him or her access to the target page.

Patient Study Calendar also uses user-based authorization for specific resources. For example, it is possible to limit access of an individual template to specific users.

6. Patient Study Calendar APIs

Javadoc is provided for the domain classes as an informational alternative to the published UML models and to document the public dynamic API. Please see: http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/Final/PSC_API.tar.bz2?cvsroot=studycalendar
Public API:

Interface PlannedCalendarService

registerStudy

PlannedCalendar registerStudy(Study study)

 Notify the PSC about the given study. The PSC will create a default template for it. The study must include all site associations.

 If the study has previously been registered, the existing template will be returned. If a study is re-registered with different site associations, any new site associations will be added. Attempting to re-register with missing site associations is an error.

 Parameters:

 study –

 Returns:

 the newly created default template for the study.

getPlannedCalendar

PlannedCalendar getPlannedCalendar(Study study)

 Retrieve the calendar template for the given study.

 Parameters:

 study - The study for which to return the calendar. For purposes of matching, implementations are only required to consider the study's grid ID.

 Returns:

 The full calendar template as it currently exists in the system.
Interface ScheduledCalendarService

assignParticipant

ScheduledCalendar assignParticipant(Study study,

 Participant participant,

 Site site,

 Arm firstArm,

 Date startDate)

 Assign a participant to the given study from the given site.

 Parameters:

 study - The study to which the participant will be assigned. PSC must already know about it.

 participant - If the participant is unknown, it will be automatically registered.

 site - The site from which the participant is being assigned. The PSC must already know about it and its association with the study.

 firstArm - The arm of the template to which the participant should be initially assigned

 startDate -

 Returns:

 the newly created schedule

getScheduledCalendar

ScheduledCalendar getScheduledCalendar(Study study,

 Participant participant,

 Site site)

 Retrieve the full schedule for a participant on a study at a site. Implementations may consider only the grid IDs for the parameters.

 Parameters:

 study -

 participant -

 site -

 Returns:

 The full schedule, with all scheduled arms and scheduled events, as it currently exists.

getScheduledEvents

Collection<ScheduledEvent> getScheduledEvents(Study study,

 Participant participant,

 Site site,

 Date startDate,

 Date endDate)

 Return the events that exist for a schedule in the given date range. The date range is matched by the actual date for events in the scheduled and occurred states, and the ideal date for events in the canceled state.

 Parameters:

 study -

 participant -

 site -

 startDate - The beginning of the range of dates to include. If null, there is no early limit.

 endDate - The end of the range of dates to include. If null, there is no late limit.

changeEventState
ScheduledEvent changeEventState(ScheduledEvent event,

 ScheduledEventState newState)

Change the state of the given event to the given new state. For matching, implementations may consider only the grid ID of the event.

 Parameters:

 event -

 newState -

 Returns:

 The same event, updated into the new state

scheduleNextArm
void scheduleNextArm(Study study,

 Participant participant,

 Site site,

 Arm nextArm,

 NextArmMode mode,

 Date startDate)

Indicate the next arm for the participant's schedule.

 Parameters:

 study -

 participant -

 site -

 nextArm -

 mode -

 startDate –

RESTful API:

The remainder of the API has been created using Representational State Transfer (REST). The REST API allows you to programmatically create and update templates, schedules, and activities using PSC's XML format and the standard HTTP protocol. For more information about REST’s resource-oriented model, see Wikipedia (don't miss the list of links at the end of the article). The book RESTful Web Services also provides an excellent introduction.

A detailed description of PSC’s RESTful API is available in PDF format from our GForge site:

http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC-RESTful-API.pdf?cvsroot=studycalendar
For developers planning to leverage the RESTful API, please note:

· A human readable, updated description of the API will be included within each release and will be available at http://your.psc.server/studycalendar/api/v1/docs. Resources that are not yet available will be marked as “Pending” in the documentation.

· The machine readable version will be available at http://your.psc.server/studycalendar/api/v1/docs/psc.wadl
· The full xml schema for your local version of PSC is available at http://your.psc.server/studycalendar/api/v1/docs/psc.xsd
· The full xml schema for the current version of PSC is published publicly at http://bioinformatics.northwestern.edu/ns/psc/psc.xsd
7. Patient Study Calendar Grid Services

Grid services have been developed in PSC to consume messages from other CTMS applications such as caAERS and C3PR. Currently there are four grid services deployed

· Adverse-event-consumer

· Registration-consumer

· Study-consumer

· Study Service

adverse-event-consumer grid service: This grid service extends ctms adverse-event-consumer grid service. It consumes messages related to adverse event happened to a patient on a study. Currently, these messages are being generated by caAERS or any other application. These messages are further processed and displayed on the calendar of that patient

Public API

This grid service extends ctms adverse-event-grid service. Following is the interface that ctms adverse-event-grid service provides

Interface AdverseEventConsumer {
register(gov.nih.nci.cabig.ctms.grid.ae.beans.AENotificationType aeNotification)throws gov.nih.nci.cabig.ctms.grid.ae.stubs.types.InvalidRegistration, gov.nih.nci.cabig.ctms.grid.ae.stubs.types.RegistrationFailed;}
Process the adverse event notification message sent by caAERS, and then create and register an adverse event for that patient for which adverse event happened. This message is further displayed on the calendar of that patient.
Following is an example of a SampleMessage.xml that can be consumed by this grid service.

<?xml version="1.0" encoding="UTF-8"?>

<AENotification xmlns = "http://semanticbits.com/aeNotification"registrationGridId="48da4c0e-d3ce-4840-a3fa-3fb7c9aa146c">

<detectionDate>2007-10-23</detectionDate>

<description>Grade 4 adverse event with</description>

</AENotification>

 registration-consumer grid service: This grid service extends ctms registration-consumer grid service. It consumes messages for registering a patient to a study. Currently, these messages are being sent by C3PR. These messages are further processed and the patient is registered on that study.

Public API

This grid service extends ctms registration-consumer-grid service. Following is the interface that ctms registration-consumer-grid service provides

Interface RegistrationConsumer {

gov.nih.nci.ccts.grid.Registration register(gov.nih.nci.ccts.grid.Registration registration) throws RemoteException, gov.nih.nci.ccts.grid.stubs.types.InvalidRegistrationException, gov.nih.nci.ccts.grid.stubs.types.RegistrationConsumptionException ;

Process the registration message sent by C3PR, and then register a subject on a study. It commits the message immediately.
void commit(gov.nih.nci.ccts.grid.Registration registration) throws RemoteException, gov.nih.nci.ccts.grid.stubs.types.InvalidRegistrationException, gov.nih.nci.ccts.grid.stubs.types.RegistrationConsumptionException ;

Its an empty implementation since registration messages are always commit immediately.
void rollback(gov.nih.nci.ccts.grid.Registration registration) throws RemoteException, gov.nih.nci.ccts.grid.stubs.types.InvalidRegistrationException, gov.nih.nci.ccts.grid.stubs.types.RegistrationConsumptionException ;

rollbacks (or delete) the existing subject only if subject is assigned to one study site. If subject are assigned to more than one study site, method assumes that the subject was created from ui and it only deletes the study-subject assignments not the subject.
Following is an example of a SampleRegistrationMessage.xml that can be consumed by this grid service:

<?xml version="1.0" encoding="UTF-8"?>

<registration xmlns="gme://c3pr.cabig/2.0/edu.duke.cabig.c3pr.domain" gridId="gridStudy">

<studySite gridId="gridSite">

<healthcareSite>

<nciInstituteCode>code</nciInstituteCode>

</healthcareSite>

<irbApprovalDate>2007-09-27T17:29:04.390-04:00</irbApprovalDate>

<startDate>2007-09-27T17:29:04.390-04:00</startDate>

</studySite>

<studyRef gridId="gridStudy">

<shortTitleText>ShortTitleText1</shortTitleText>

<longTitleText>LongTitleText1</longTitleText>

</studyRef>

<participant gridId="AAAAA11111GridID">

<firstName>Rudolph</firstName>

<lastName>Clooney</lastName>

<administrativeGenderCode>M</administrativeGenderCode>

<address>

<streetAddress>12359 sunrise valley drive</streetAddress>

<city>Reston</city>

<stateCode>VA</stateCode>

<postalCode>20191</postalCode>

<countryCode>USA</countryCode>

 </address>

<birthDate>0006-06-23</birthDate>

<raceCode>White</raceCode>

<identifier xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="SystemAssignedIdentifierType">

<type>MRN</type>

<value>MRN-12A!2121</value>

<primaryIndicator>false</primaryIndicator>

<systemName>C3PR</systemName>

</identifier>

</participant>

<startDate>2007-09-27</startDate>

<informedConsentFormSignedDate>2007-09-27</informedConsentFormSignedDate>

<informedConsentVersion>1.0</informedConsentVersion>

<regDataEntryStatus>COMPLETE</regDataEntryStatus>

<regWorkflowStatus>REGISTERED</regWorkflowStatus>

<scheduledEpoch xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" gridId="81b1da04-5c75-4c94-9422-fddc9d112147" xsi:type="ScheduledTreatmentEpochType">

<startDate>2007-09-27</startDate>

<epoch gridId="715c0242-f2d6-4bf4-9d21" xsi:type="TreatmentEpochType">

<name>epoch1</name>

</epoch>

<scheduledArm>

</scheduledArm>

</scheduledEpoch>

<stratumGroup>0:lets find out1</stratumGroup>

</registration>
Study-consumer grid service: This grid service extends ctms study-consumer grid service. It consumes messages for creating studies on a site. Currently, these messages are being sent by C3PR. These messages are further processed and studies are created on a site.
Public API

This grid service extends ctms study-consumer-grid service. Following is the interface that ctms study-consumer-grid service provides

Interface StudyConsumer {

void createStudy(final gov.nih.nci.ccts.grid.Study studyDto) throws RemoteException, InvalidStudyException, StudyCreationException

Process the study creation message sent by C3PR, and than register a study on a site. It commits the message immediately.
void commit(final gov.nih.nci.ccts.grid.Study studyDto) throws RemoteException, InvalidStudyException

Its an empty implementation since study creation messages are always committed immediately.
void rollback(final gov.nih.nci.ccts.grid.Study studyDto) throws RemoteException, InvalidStudyException
rollback (delete) the existing study.

study-service grid service: This grid service provide functionality of importing or exporting templates.

Public API

Following is the interface in this grid service

Interface StudyService{
edu.northwestern.bioinformatics.studycalendar.grid.Study retrieveStudyByAssignedIdentifier(String assignedIdentifier) throws RemoteException, StudyDoesNotExistsException;

Retrieves a study by a given assigned identifier. StudyDoesNotExistsException is thrown if no study found for given assigned identifier.

edu.northwestern.bioinformatics.studycalendar.grid.Study createStudy(edu.northwestern.bioinformatics.studycalendar.grid.Study study) throws RemoteException, edu.northwestern.bioinformatics.studycalendar.grid.stubs.types.StudyCreationException;

Creates a new study. This method does not edit any existing study. It only creates a new study and throws StudyCreationException if a new study can not be created.
8. Information Models

Patient Study Calendar follows a code-driven modeling approach, whereby UML is used for communication among developers, documentation for the domain, and a guide for future harmonization, but is not used directly to generate software.

For additional models, please see: http://gforge.nci.nih.gov/plugins/scmcvs/cvsweb.php/studycalendar/PhaseII/Construction/Iteration4/PSC_UML-P2-R3.EAP?cvsroot=studycalendar

9. Customized Tools

Bering – Incremental database development

In support of Patient Study Calendar development we have developed a tool called Bering. It enables database-independent incremental schema development in a manner similar to ActiveRecord migrations in Ruby on Rails.

The basic idea is this: say developer Alice needs to change the structure or content of the database (e.g., to add a column to a table or change the values in a lookup table). She writes a Bering migration script encapsulating that modification and commits it alongside whatever code makes use of the revised database. After developer Bob updates his local working copy and receives Alice’s new code, he can execute Bering as part of his rebuild process. Bering discovers that there is a new script which hasn’t been applied to Bob’s development database and updates it automatically.

Using database migration scripts is superior to a single project schema SQL file because it makes it easy for each developer to maintain his or her own development/test database(s) – and since each developer doesn’t have to spend time tracking down and manually applying schema changes after each update, there is more time to do useful work. And since the process is automatic, it can be used (in conjunction with a unit test suite) by a continuous integration server to verify that the schema changes don’t break existing functionality.

The migration scripts can also be used when the application is deployed in production and a new version becomes available. Since the scripts are incremental, they can update a database with existing data as easily as a development database (where you don’t care about the contents). And since Bering keeps track of which scripts have been applied to the database, no developer time has to be spent writing special upgrade scripts for end users.

Bering has been developed in parallel with Patient Study Calendar and should be suitable for use in other projects. Its source is available from https://svn.bioinformatics.northwestern.edu/bering/trunk and includes an Ant task and some examples of use.

Appendix A References

Technical Manuals/Articles

1. National Cancer XE "References:technical manuals, guides"

 XE "References:scientific publications" Institute. "caCORE 2.0 Technical Guide", ftp://ftp1.nci.nih.gov/pub/cacore/caCORE2.0_Tech_Guide.pdf
2. Java Bean Specification: http://java.sun.com/products/javabeans/docs/spec.html
3. Foundations of Object-Relational Mapping: http://www.chimu.com/publications/objectRelational/
4. Object-Relational Mapping articles and products: http://www.service-architecture.com/object-relational-mapping/
5. Hibernate Reference Documentation: http://www.hibernate.org/hib_docs/reference/en/html/
6. Basic O/R Mapping: http://www.hibernate.org/hib_docs/reference/en/html/mapping.html
7. Java Programming: http://java.sun.com/learning/new2java/index.html
8. Javadoc tool: http://java.sun.com/j2se/javadoc/
9. JUnit: http://junit.sourceforge.net/
10. Extensible Markup Language: http://www.w3.org/TR/REC-xml/
11. XML Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm
Appendix B Glossary

.

	Term
	Definition

	API
	Application Programming Interface

	caBIG
	cancer Biomedical Informatics Grid

	CSM
	Common Security Module

	DAO
	Data Access Objects

	HTTP
	Hypertext Transfer Protocol

	JAR
	Java Archive

	Javadoc
	Tool for generating API documentation in HTML format from doc comments in source code (http://java.sun.com/j2se/javadoc/)

	JDBC
	Java Database Connectivity

	JSP
	JavaServer Pages

	JUnit
	A simple framework to write repeatable tests (http://junit.sourceforge.net/)

	MVC
	Refers to the separation of Model, View, and Controller

	POJO
	Plain Old Java Object

	ORM
	Object Relational Mapping

	RDBMS
	Relational Database Management System

	REST
	Representational State Transfer

	SDK
	Software Development Kit

	SQL
	Structured Query Language

	UML
	Unified Modeling Language

	UPT
	User Provisioning Tool

	URL
	Uniform Resource Locators

	WAR
	Web Application Archive

	XMI
	XML Metadata Interchange (http://www.omg.org/technology/documents/formal/xmi.htm) - The main purpose of XMI is to enable easy interchange of metadata between modeling tools (based on the OMG-UML) and metadata repositories (OMG-MOF) in distributed heterogeneous environments

	XML
	Extensible Markup Language (http://www.w3.org/TR/REC-xml/) - XML is a subset of Standard Generalized Markup Language (SGML). Its goal is to enable generic SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML

2/8/2008

1

Insert date here (optional)
ii
2

[image: image11.jpg]_1100765170.doc
[image: image1.png]sd xxxSecurity)

A
PSC User

[Dispatehersenef] ~ [Handlertiapping] [Handleradaptor

[LoginCheckdnterceptor]

[URLAccessCheckinterceptor

Cantroller

Commana

[accessDeniedjsp)

loginjsp

isp

request

createlaccess

lookup

getinterceptors

preHandle

preHandle

isSuccessful=false]

handle
modelView

handleRequest

forward

create

